
Copyright© Fixstars Group

量子コンピュータ時代の
プログラミングセミナー

〜多目的最適化における定式化技術解説〜

Copyright© Fixstars Group

本日の予定

3

⚫ 会社紹介

⚫ Fixstars Amplify の紹介

⚫ 組合せ最適化事例

⚫ 多目的最適化実装のコツ

⚫ 求解性能向上の工夫

⚫ 自走開発の進め方

質問は随時 Zoom の Q&A へお願いします

Copyright© Fixstars Group

(株) Fixstars Amplify の紹介

• 組合せ最適化のための量子コンピューティングクラウド

プラットフォーム「Fixstars Amplify」の提供

• 2021年に設立（株式会社フィックスターズからスピンアウト）

• 代表取締役社長CEO：松田 佳希（博士）

• 親会社 (株) フィックスターズ (東証P: 3687)

• ソフトウェア高速化プロフェッショナル集団

• 2017年 日本で初めてD-Wave Systems社と提携

1.2億 を超える実行回数 (Amplify AE)

1,100 を超える企業、研究所、大学

4

Copyright© Fixstars Group

量子技術とFixstars Amplify

5

Copyright© Fixstars Group

量子コンピュータ

（量子ゲート方式）

■古典汎用コンピュータの上位互

換。量子ゲートを操作。エラー

訂正機能の無いNISQ型実機が

クラウド利用可能

■QAOAにより組合せ最適化問題

(QUBO) を取り扱うことが可能

■演算規模：〜数100ビット

量子
コンピュータ

その他の
イジングマシン

量子
アニーリング

IBM

Google

Rigetti

IonQ, …

D-Wave

Fixstars Amplify

TOSHIBA, Fujitsu

NEC, HITACHI

DNP, …

量子・量子インスパイアード技術

量子アニーリング（量子焼きなまし法式のイジングマシン）

■イジングマシンの一種。量子イジング模型を物理的に搭載したプロセッサで実現。

量子効果を物理的に調整し、自然計算により低エネルギー状態が出力

■組合せ最適化問題 (QUBO) を扱う専用マシン

■演算規模：〜数1,000ビット

その他のイジングマシン

（量子インスパイアード技術）

■半導体技術に基づくイジングマシン

■二次の多変数多項式で表される目的

関数の組合せ最適化問題 (QUBO)

専用マシン

■統計物理学におけるイジング模型に

由来。様々な実装により実現。

■演算規模：

260,000+ビット（Amplify AE）

6

Copyright© Fixstars Group

Fixstars Amplify とは

– いつでも 開発環境 と 実行環境 がセット
すぐにアプリ開発と実行が出来る

– 誰でも ハードウェアや専門的な知識が不要
無料で開発がスタート可能
多くの解説、サンプルコード

– 高速に 26万ビットクラスの大規模問題の
高速処理と高速実行が可能

– あらゆる 一般に公開されている全てのイジング
マシンを利用可能

7

Copyright© Fixstars Group

Fixstars Amplify の対応マシンの一例

標準マシン は、

• ベンダ各社と個別マシン利用契約なし、

• 評価・検証用ベーシックプランなら無料、

で利用可能！←「いつでも」、「誰でも」

今後も幅広い対応マシンの追加が続々と行わ

れる予定です！←「あらゆる」

8

Copyright© Fixstars Group

活用領域とユースケース（PoC・実稼働）
検索Amplify インタビュー

生産計画

従業員割り当て

エネマネ

経路

メディア

研究開発、設計

• 多品種少量生産、保全計画、設備投資、
在庫

• 食品、輸送、製造

• エネルギーミックス、装置の運転制御

• 配送、船舶、無人搬送車 (AVG)

• 最適広告配信

• 材料設計

• 物理シミュレーション

• ブラックボックス

最適化

9

Copyright© Fixstars Group

（多目的）最適化実装のコツと
求解性能向上のヒント

10

Copyright© Fixstars Group

Amplify SDK による基本実装

11/25

• 制約条件を満たしながら目的関数が

最小となる決定変数の値を探索

• 決定変数 バイナリ変数 q[0], q[1]

• 目的関数 q[0] - 2 * q[0] * q[1]

• 制約条件 one_hot ➔ qの要素1つが1

• その他の制約ヘルパー関数

• equal_to

• less_equal

• greater_equal

• clamp

• domain_wall

決定変数の発行

q = VariableGenerator().array("Binary", 2)

目的関数と制約条件の定義

objective = q[0] - 2 * q[0] * q[1]

constraint = one_hot(q)

モデルの構築

model = Model(objective, constraint)

ソルバーの指定

client = AmplifyAEClient()

client.token = "Amplify AE のアクセストークン"

client.parameters.time_limit_ms = 1000 # ms

最適化の実行

result = solve(model, client)

結果の表示

print(q.evaluate(result.best.values)) # [1. 0.]

print(objective.evaluate(result.best.values)) # 0.0

Copyright© Fixstars Group

制約条件のペナルティ化

12/25

• 制約条件のペナルティ化

• 制約違反の場合には目的関数にペナルティが加算

されるように Amplify SDK が論理変換

• ペナルティ込み目的関数を最小化するよう探索

• 結果として、全ペナルティゼロ（制約充足）な解

が得られることが期待される

• 制約の重み

• 一般的なイジングマシンでは、目的関数に対して、

どの程度のペナルティを加算するかを調整する。

不適切な重みを与えると、実行可能解を得られな

い可能性大。

• Amplify AEの場合は、ソルバー側で重みを自動調

整するので不要

決定変数の発行

q = VariableGenerator().array("Binary", 2)

目的関数と制約条件の定義

objective = q[0] - 2 * q[0] * q[1]

constraint = one_hot(q)

モデルの構築

model = Model(objective, constraint)

ソルバーの指定

client = AmplifyAEClient()

client.token = "Amplify AE のアクセストークン"

client.parameters.time_limit_ms = 1000 # ms

最適化の実行

result = solve(model, client)

結果の表示

print(q.evaluate(result.best.values)) # [1. 0.]

print(objective.evaluate(result.best.values)) # 0.0

Copyright© Fixstars Group

Amplify AE 求解フロー

13/25

• 探索の実行

• 求解時間 の中で、アルゴリズム実行単位の「探

索」を繰り返し、より小さい目的関数値を実現

する解を取得

• 解の返却

• 探索回数分の解を SDK に返却

• 最初の「探索」で真の最適解が得られた場合、

SDK に返却される解は1つ

• 最低1つの「解」が得られるまで求解を継続

• 制約充足の判定

• ソルバーは制約ペナルティ値のみを考慮。

• 最終的な制約充足は SDK によって判定。

決定変数の発行

q = VariableGenerator().array("Binary", 2)

目的関数と制約条件の定義

objective = q[0] - 2 * q[0] * q[1]

constraint = one_hot(q)

モデルの構築

model = Model(objective, constraint)

ソルバーの指定

client = AmplifyAEClient()

client.token = "Amplify AE のアクセストークン"

client.parameters.time_limit_ms = 1000 # ms

最適化の実行

result = solve(model, client)

結果の表示

print(q.evaluate(result.best.values)) # [1. 0.]

print(objective.evaluate(result.best.values)) # 0.0

Copyright© Fixstars Group

適切な求解時間の決め方は？

14/25

• 解のタイムスタンプ情報の活用

• AE はタイムアウト内に得られた「探索」

回数分の「解」全てを SDK に返却。

• SDK は返却された「解」から、制約を満た

す解（実行可能解）のみを result に格納

• 実行可能解及びタイムスタンプをプロット

関連ドキュメントページ ：
https://amplify.fixstars.com/ja/docs/amplify/v1/timing.html#id4

import matplotlib.pyplot as plt

定式化

・・・

ソルバーの指定

client = AmplifyAEClient()

client.token = "Amplify AE のアクセストークン"

client.parameters.time_limit_ms = 1000 # ms

ソルバーの実行

result = solve(model, client)

それぞれの解の時刻と目的関数の値を取得

times = [solution.time.total_seconds() for solution in result]

objective_values = [solution.objective for solution in result]

プロット

plt.plot(times, objective_values, "-o")

plt.xlabel("elapsed time in seconds")

plt.ylabel("objective value")

plt.grid(True)

https://amplify.fixstars.com/ja/docs/amplify/v1/timing.html#id4

Copyright© Fixstars Group

単目的最適化：「重み」に関するヒント

15/25

• 制約重み weight の例

• 目的関数値が取りそうな値とする

• max(d)

• sum(d)

• …

• ただし、

• Amplify AE の場合、制約重みはソル

バー内部で自動調整するため、ユー

ザーによる重み指定は不要。

• 目的関数が複数の場合は？

巡回セールスマン問題の定式化例

gen = VariableGenerator()

q = gen.array("Binary", N + 1, N)

q[-1, :] = q[0, :]

objective = 0

for k in range(N):

for i in range(N):

for j in range(N):

objective += d[i, j] * q[k, i] * q[k + 1, j]

constraint1 = one_hot(q[:-1], axis=1)

constraint2 = less_equal(q[:-1], axis=0)

model = objective + weight * (constraint1 + constraint2)

෍

𝒊,𝒋,𝒌

𝑵

𝒅𝒊,𝒋 𝒒𝒌,𝒊𝒒𝒌+𝟏,𝒋

（Amplify AEでは考慮不要）

Copyright© Fixstars Group

多目的最適化：スケーリングに関する基本的な方針

16/25

• 多目的最適化

• 目的関数が複数存在

• 「ソフト制約」も目的関数の1つ

• 複数の目的関数が異なるレンジを取り得

る

• それぞれの目的関数をスケーリング（右例）。

スケーリング係数 (s_1, s_2) は、(obj_1,

obj_2) の定式化に基づいて見積もり

• 多目的最適化における制約重み

• Amplify AE では不要

• スケーリング後の目的関数に対して必要

であれば重みを設定

多目的最適化問題の例

obj_1 = ...

obj_2 = ...

const_1 = one_hot(...)

const_2 = less_equal(...)

obj_1 と obj_2 のレンジが大きく異なる場合、不適

model = obj_1 + obj_2 + const_1 + const_2

obj_1 と obj_2 のレンジが大きく異なる場合でも、対応可

ここで、s_1 と s_2 はそれぞれ obj_1 と obj_2 の代表値

model = obj_1 / s_1 + obj_2 / s_2 + const_1 + const_2

スケーリング後に各目的関数の重みを微調整しても良い

model = 10 * obj_1 / s_1 + obj_2 / s_2 + const_1 +...

Copyright© Fixstars Group

多目的最適化：発展的なスケーリング係数決定

17/25

• スケーリング係数の自動決定 (AE)

1. 制約問題として求解

➔短いタイムアウトで多くの解を取得

➔制約を満たすランダム解とみなせる

2. 解を個々の目的関数に代入、代入結果

を目的関数のスケーリング係数とする

3. 目的関数を除算しスケーリングを実施

➔目的関数の取りうる値が 1 程度にな

ることが期待される

4. スケーリング後の目的関数と制約条件

を考慮し、最適化問題として求解

多目的最適化問題の例

obj_1 = ...

obj_2 = ...

const_1 = one_hot(...)

const_2 = less_equal(...)

制約問題として求解

model = const_1 + const_2

result = solve(model, client)

s_1 と s_2 はそれぞれ obj_1 と obj_2 の代表値

s_1 = max([obj_1.evaluate(sol.values) for sol in result])

s_2 = max([obj_2.evaluate(sol.values) for sol in result])

obj_1 と obj_2 のレンジが大きく異なる場合でも、対応可

model = obj_1 / s_1 + obj_2 / s_2 + const_1 + const_2

実際の最適化問題として求解

result = solve(model, client)

Copyright© Fixstars Group

多目的最適化：発展的なスケーリング係数決定

18/25

• スケーリング係数の自動決定 (AE)

1. 制約問題として求解（目的関数無し）

➔短いタイムアウトで多くの解を取得

➔制約を満たすランダム解とみなせる

2. 解を個々の目的関数に代入、代入結果を目的

関数のスケーリング係数とする

3. 目的関数をスケーリング係数で除算しスケー

リングを実施

➔目的関数の取りうる値が 1 程度になるこ

とが期待される

4. スケーリング後の目的関数と制約条件を考慮

し、最適化問題として求解

amplify.fixstars.com/ja/demo/hems

https://amplify.fixstars.com/ja/demo/hems

Copyright© Fixstars Group

求解性能を向上させる工夫

19/25

• ソルバーの直列実行 (num_solves)

• https://amplify.fixstars.com/ja/docs/amplify/v1/serial.html

• ソルバーによっては、長時間のタイムアウトを指定して 1 回実行するよりも

短時間のタイムアウトで何回か繰り返し実行するほうがより良い解を見つけ

る可能性

result = solve(model, client, num_solves=3)

https://amplify.fixstars.com/ja/docs/amplify/v1/serial.html
https://amplify.fixstars.com/ja/docs/amplify/v1/serial.html

Copyright© Fixstars Group

求解性能を向上させる様々な工夫

20/25

• 上位プランのハードウェア利用

• Basic/Standard: V100 Premium: A100 S Premium: H100

• GPU並列実行 (num_gpus)

(Amplify AEでマルチGPUオプション設定の場合のみ)

• アニーリングにて使用するGPU数を増やすことで、より高速・高精度な求解

が期待
client = AmplifyAEClient()

client.token = "Amplify AE のアクセストークン"

client.parameters.timeout = timedelta(seconds=1)

client.parameters.num_gpus = 4

Copyright© Fixstars Group

ハード別・並列数別の性能

21

異なる3つの問題サイズで、各プランにおけ

るGPUとアニーリング速度*の関係

• Basic/Standard: V100

• Premium: A100

• S Premium: H100

* Amplify AE内部で1回のモンテカルロサン

プリングに要する時間の逆数を測定。

amplify.fixstars.com/ja/engine#plan

問題サイズ
B
as
ic
に
対
す
る
速
度
比

https://amplify.fixstars.com/ja/engine#plan

Copyright© Fixstars Group

Fixstars Amplify
自走開発・進め方

22

Copyright© Fixstars Group

プランのご紹介

開発支援サービス(個別見積り)

コンサル・システム開発等
数百万円～数千万円

月額利用料
百万円～

https://amplify.fixstars.com/ja/pricing

定式化や実装を手厚く支援します！

23

https://amplify.fixstars.com/ja/pricing

Copyright© Fixstars Group

研究・開発者向けおすすめの進め方

二次・非線形を上手に使いこなせるように、弊社と一緒に取り組みを進めていきましょう！

無料版でチュート

リアルをお試し

無料セミナーに

参加

Sプレミアムプランで自分で手を動かして自社課題を本格的に検証

プライベートトレー

ニングを受講し、

自社課題（簡易版）

に挑戦
研究委託・開発委託を活用して加速！

Amplify AE のオンプレ版導入

～2ヵ月程度 3ヵ月程度 6ヵ月～

弊社が本格的に手を動かします！

必要に応じて

2～6ヵ月程度

取り組む

テーマの

拡大

プレミアムサポートや Plusオプション を通じて弊社も手厚く伴走します

Step
4

Step
3

Step
2

Step
1

4～6ヵ月程度Step
5

Step
6

24

https://amplify.fixstars.com/ja/register
https://amplify.fixstars.com/ja/seminar
https://amplify.fixstars.com/ja/seminar
https://amplify.fixstars.com/ja/seminar/private-training
https://amplify.fixstars.com/ja/seminar/private-training
https://amplify.fixstars.com/ja/pricing#option
https://amplify.fixstars.com/ja/pricing#option

Copyright© Fixstars Group

セミナー・トレーニングのご紹介

無料セミナー・ワークショップ

企業向けプライベートトレーニング

お客様が抱える実際の課題やデータを使った
カスタムメイド のトレーニングです！

ビジネス向け、エンジニア向けに分けて
開催しています！

お客様の実際の課題解決をご支援するために、無料セミナーや有償トレーニングを提供しています。

https://amplify.fixstars.com/ja/news/seminar

25

https://amplify.fixstars.com/ja/news/seminar

Copyright© Fixstars Group

今後について

概要 材料探索 翼型最適化 信号機制御

一般的な組合せ最適化問題 ブラックボックス最適化問題

目的関数のみ
で定式化

制約条件のみ
で定式化

目的関数 + 制約条件

https://amplify.fixstars.com/docs/amplify/v1/index.html

ぜひ、デモ・チュートリアルにあるサンプルコードにも挑戦してみてください！

困った時はドキュメンテーションを！

26

https://amplify.fixstars.com/docs/amplify/v1/index.html

Copyright© Fixstars Group

2026/2/19（受付中）

「エネルギーマネジメント最
適化 ハンズオン」

エネルギーマネジメント最適化をハン
ズオンで実施。

2026/3/18（予定）

「ブラックボックス最適化
（機械学習の特徴量抽出）」

ブラックボックス最適化による機械学
習の特徴量抽出をハンズオンで実施。

2026/3/5 （予定）

「Amplify-BBOpt 技術解説」

イジングマシン活用のブラックボック
ス最適化を簡単実装可能なライブラリ
Amplify-BBOptの使い方を紹介。

今後のセミナー予定・情報発信

ご質問・ご不明点がありましたら、お問い合わせフォームでご連絡下さい
https://amplify.fixstars.com/ja/contact

@FixstarsAmplify

27

2026/4/9 （予定）

「Amplify AE技術解説」

メジャーアップデートされたAmplify
独自開発イジングマシンである
Annealing Engineについて解説。

https://amplify.fixstars.com/ja/contact
https://x.com/FixstarsAmplify

Copyright© Fixstars Group

Q&A

28

	Default Section
	Slide 2: 量子コンピュータ時代の プログラミングセミナー
	Slide 3: 本日の予定
	Slide 4: (株) Fixstars Amplify の紹介
	Slide 5: 量子技術とFixstars Amplify
	Slide 6: 量子・量子インスパイアード技術
	Slide 7: Fixstars Amplify とは
	Slide 8: Fixstars Amplify の対応マシンの一例
	Slide 9: 活用領域とユースケース（PoC・実稼働）
	Slide 10: （多目的）最適化実装のコツと 求解性能向上のヒント
	Slide 11: Amplify SDK による基本実装
	Slide 12: 制約条件のペナルティ化
	Slide 13: Amplify AE 求解フロー
	Slide 14: 適切な求解時間の決め方は？
	Slide 15: 単目的最適化：「重み」に関するヒント
	Slide 16: 多目的最適化：スケーリングに関する基本的な方針
	Slide 17: 多目的最適化：発展的なスケーリング係数決定
	Slide 18: 多目的最適化：発展的なスケーリング係数決定
	Slide 19: 求解性能を向上させる工夫
	Slide 20: 求解性能を向上させる様々な工夫
	Slide 21: ハード別・並列数別の性能
	Slide 22: Fixstars Amplify 自走開発・進め方
	Slide 23: プランのご紹介
	Slide 24: 研究・開発者向けおすすめの進め方
	Slide 25: セミナー・トレーニングのご紹介
	Slide 26: 今後について
	Slide 27: 今後のセミナー予定・情報発信
	Slide 28

