
Copyright© Fixstars Group

量子コンピュータ時代の
プログラミングセミナー

〜ブラックボックス最適化を活用した
撹拌機器の設計・運転条件最適化〜

Copyright© Fixstars Group

本日の予定

• 会社紹介

• Fixstars Amplify の紹介

• 組合せ最適化事例

• ワークショップ事前準備

• 組合せ最適化の基本

• 数の分割ハンズオン

• ブラックボックス最適化とは

• FMQAの概要とフロー

• FMQAによる設計最適化ハンズオン

• 問題の説明

• FM

• FMQA

• Amplify-BBOpt

• まとめ

質問は随時 Zoom の Q&A へお願いします

第一部 第二部 第三部

2

Copyright© Fixstars Group

(株) Fixstars Amplify の紹介

• 組合せ最適化のための量子コンピューティングクラウド

プラットフォーム「Fixstars Amplify」の提供

• 2021年に設立（株式会社フィックスターズからスピンアウト）

• 代表取締役社長CEO：松田 佳希（博士）

• 親会社 (株) フィックスターズ (東証P: 3687)

• ソフトウェア高速化プロフェッショナル集団

• 2017年 日本で初めてD-Wave Systems社と提携

1.1億 を超える実行回数 (Amplify AE)

1,100 を超える企業、研究所、大学

3

Copyright© Fixstars Group

量子技術とFixstars Amplify

4

Copyright© Fixstars Group

量子コンピュータ

（量子ゲート方式）

■古典汎用コンピュータの上位互

換。量子ゲートを操作。エラー

訂正機能の無いNISQ型実機が

クラウド利用可能

■QAOAにより組合せ最適化問題

(QUBO) を取り扱うことが可能

■演算規模：〜数100ビット

量子
コンピュータ

その他の
イジングマシン

量子
アニーリング

IBM

Google

Rigetti

IonQ, …

D-Wave

Fixstars Amplify

TOSHIBA, Fujitsu

NEC, HITACHI

DNP, …

量子・量子インスパイアード技術

量子アニーリング（量子焼きなまし法式のイジングマシン）

■イジングマシンの一種。量子イジング模型を物理的に搭載したプロセッサで実現。

量子効果を物理的に調整し、自然計算により低エネルギー状態が出力

■組合せ最適化問題 (QUBO) を扱う専用マシン

■演算規模：〜数1,000ビット

その他のイジングマシン

（量子インスパイアード技術）

■半導体技術に基づくイジングマシン

■二次の多変数多項式で表される目的

関数の組合せ最適化問題 (QUBO)

専用マシン

■統計物理学におけるイジング模型に

由来。様々な実装により実現。

■演算規模：

260,000+ビット（Amplify AE）

5

Copyright© Fixstars Group

最適化問題の分類

• 連続最適化問題

• 決定変数が連続値（実数など）

• 決定変数が離散値 (整数など)

• 整数計画問題 (決定変数が整数)

• 0-1整数計画問題 (決定変数が二値)

𝒇 𝒒 =෍

𝑖<𝑗

𝑄𝑖𝑗𝑞𝑖𝑞𝑗 +෍

𝑖

𝑄𝑖𝑖𝑞𝑖

𝒇: 目的関数 𝑸: 係数𝒒: 決定変数

𝒇 𝒒 を最小化するような 𝒒 を求める

Quadratic 二次形

Unconstrained 制約条件なし

Binary 0-1整数 (二値)

Optimization 計画（最適化）

クラウドサービス：Fixstars Amplify

数理最適化問題 量子アニーリング・イジングマシン

QUBO目的関数 (0-1整数二次計画問題)

6

Copyright© Fixstars Group

Fixstars Amplify とは

– いつでも 開発環境 と 実行環境 がセット
すぐにアプリ開発と実行が出来る

– 誰でも ハードウェアや専門的な知識が不要
無料で開発がスタート可能
多くの解説、サンプルコード

– 高速に 26万ビットクラスの大規模問題の
高速処理と高速実行が可能

– あらゆる 一般に公開されている全てのイジング
マシンを利用可能

7

Copyright© Fixstars Group

Fixstars Amplify の対応マシンの一例

標準マシン は、

• ベンダ各社と個別マシン利用契約なし、

• 評価・検証用ベーシックプランなら無料、

で利用可能！←「いつでも」、「誰でも」

今後も幅広い対応マシンの追加が続々と行わ

れる予定です！←「あらゆる」

8

Copyright© Fixstars Group

活用領域とユースケース（PoC・実稼働）
検索Amplify インタビュー

生産計画

従業員割り当て

エネマネ

経路

メディア

研究開発、設計

• 多品種少量生産、保全計画、設備投資、
在庫

• 食品、輸送、製造

• エネルギーミックス、装置の運転制御

• 配送、船舶、無人搬送車 (AVG)

• 最適広告配信

• 材料設計

• 物理シミュレーション

• ブラックボックス

最適化

9

Copyright© Fixstars Group

アニーリングマシンの
プログラミング体験

10

Copyright© Fixstars Group

イジングマシンの実行手順

1. 数理モデル検討

2. 定式化

3. モデル変換
(論理・物理)

4. 入力データの準備

5. マシンの実行

解きたい課題の「目的関数」「決定変数」とその「制約条件」を検討する

「 多項式」で「目的関数」と「決定変数」を記述 (変換) する

「決定変数」 に対する「制約条件」を Amplify で表現する

各マシンの仕様や制限に準拠した形式にモデルを変換する

(例: 二次項に制約がある場合は「グラフマイナー埋め込み」問題を解く)

各マシンのSDKやAPI仕様に合わせてQUBO模型 (物理) をデータ化する

マシンを実行して出力の変数値やエネルギー値(コスト値)を解析する

上記の逆の手順を辿り解きたい課題の「決定変数」を解釈する

A
m

p
li
fy

 S
D

K
に

よ
る

サ
ポ

ー
ト

ハンズオンセミナーのメイントピック

11

Copyright© Fixstars Group

Amplifyの基本的な使用方法 (1)

• まずはインポート

• 使用するマシンを選択

Install Amplify SDK to Google Colab

! pip install -q amplify

#Import all functions and classes
from amplify import *

Fixstars Amplify AE

client = AmplifyAEClient ()

Timeout 1s
client.parameters.time_limit_ms = 1000 #ms

API token
client.token = "AE/XXXXXXXXXXXXXXXXXXXXx"

その他のクライアントを使用する場合は
ドキュメントを参照

https://amplify.fixstars.com/ja/doc
s/amplify/v1/clients.html

12

https://amplify.fixstars.com/ja/docs/amplify/v1/clients.html
https://amplify.fixstars.com/ja/docs/amplify/v1/clients.html

Copyright© Fixstars Group

Amplifyの基本的な使用方法 (2)

• 目的関数の定式化 (多項式)

• バイナリ多項式の構築

• 式の構築

決定変数生成器を作成
g = VariableGenerator()

長さ 2 の決定変数配列を作成
q = g.array("Binary", 2)

f = 2 * q[0] * q[1] + q[0] - q[1] + 1

print(f)

2 q_0 q_1 + q_0 - q_1 + 1

バイナリ変数 (“Binary”) だけでなく、イジング変数 (“Ising”) や、
整数変数 (“Integer”)、実数変数 (“Real”) も指定可能

3次以上の高次多項式も可能。マシンが対応していない
場合は Amplify SDK が内部的に次数下げを行う

13

Copyright© Fixstars Group

Amplifyの基本的な使用方法 (3)

• モデルの作成とマシンの実行

• 結果の取得

model = Model(f)

result = solve(model, client)

目的関数と制約条件からモデルを作成し
使用するクライアントと共に求解

print(f"objective = {result.best.objective}")
objective = 0.0

print(f"q = {q.evaluate(result.best.values)}")
q = [0. 1.]

最良解を `best` で指定
目的関数の値を `objective` にて

変数の値を `values` で得る

14

Copyright© Fixstars Group

Amplify SDK によるプログラミング例

1. 定式化

• 決定変数：スカラーあるいは配列型

• 目的関数：決定変数による数式処理

• 制約条件：制約条件の構築及び管理

2. ソルバークライアントの選択

• ソルバークライアントオブジェクトの構築

• ほぼ全てのパラメータの設定が可能

3. ソルバーを実行

• 論理モデルをハードウェアのスペック等に

合わせたモデルに変換

• 適切なモデル変換・定式化手法を選択

4. 解の取得

• マシンの出力解を逆変換し決定変数の形式で出力

from amplify import *

決定変数を生成

g = VariableGenerator()
q = g.array("Binary", 2)

#目的関数を構築

f = 2 * q[0] * q[1] + q[0] - q[1] + 1

Amplify モデルを構築

model = Model(f)

#ソルバーの設定

client = AmplifyAEClient()

client.parameters.time_limit_ms = 1000 #ms
client.token = "AE/XXXXXXXXXXXXXXXXXXXXx"

求解の実行

result = solve(model, client)

結果の表示

print(f“objective = {result.best.objective}”)
print(f"q = {q.evaluate(result.best.values)}")

15

Copyright© Fixstars Group

Fixstars Amplify
ご利用プラン

16

Copyright© Fixstars Group

料金のご紹介

開発支援サービス(個別見積り)

コンサル・システム開発等
数百万円～数千万円

月額利用料
百万円～

https://amplify.fixstars.com/ja/pricing

定式化や実装を手厚く支援します！

17

https://amplify.fixstars.com/ja/pricing

Copyright© Fixstars Group

研究・開発者向けおすすめの進め方

二次・非線形を上手に使いこなせるように、弊社と一緒に取り組みを進めていきましょう！

無料版でチュート

リアルをお試し

無料セミナーに

参加

Sプレミアムプランで自分で手を動かして自社課題を本格的に検証

プライベートトレー

ニングを受講し、

自社課題（簡易版）

に挑戦
研究委託・開発委託を活用して加速！

Amplify AE のオンプレ版導入

～2ヵ月程度 3ヵ月程度 6ヵ月～

弊社が本格的に手を動かします！

必要に応じて

2～6ヵ月程度

取り組む

テーマの

拡大

プレミアムサポートや Plusオプション を通じて弊社も手厚く伴走します

Step
4

Step
3

Step
2

Step
1

4～6ヵ月程度Step
5

Step
6

18

https://amplify.fixstars.com/ja/register
https://amplify.fixstars.com/ja/seminar
https://amplify.fixstars.com/ja/seminar
https://amplify.fixstars.com/ja/seminar/private-training
https://amplify.fixstars.com/ja/seminar/private-training
https://amplify.fixstars.com/ja/pricing#option
https://amplify.fixstars.com/ja/pricing#option

Copyright© Fixstars Group

セミナー・トレーニングのご紹介

無料セミナー・ワークショップ

企業向けプライベートトレーニング

お客様が抱える実際の課題やデータを使った
カスタムメイド のトレーニングです！

ビジネス向け、エンジニア向けに分けて
開催しています！

お客様の実際の課題解決をご支援するために、無料セミナーや有償トレーニングを提供しています。

https://amplify.fixstars.com/ja/news/seminar

19

https://amplify.fixstars.com/ja/news/seminar

Copyright© Fixstars Group

ワークショップ
事前準備（事前メールの内容）

20

Copyright© Fixstars Group

ワークショップの事前準備 (1)

• 【事前メールに記載】ご自身のPC (ブラウザ上) で Python プログラミングを行います。Google

Colaboratory を使うので、事前にログイン出来ることを確認をお願いします（要 Google アカウント）

ユーザ登録の上、無料トークンの取得をお願いします

（1分で終わります）

https://amplify.fixstars.com/

検索Fixstars Amplify

https://colab.research.google.com/

検索Google Colab

質問は随時ZoomのQ&Aへお願いします

• 【事前メールに記載】 Fixstars Amplify ホームページより

ユーザ登録の上、無料トークンの取得をお願いします

（1分で終わります）

21

https://amplify.fixstars.com/ja/demo
https://colab.research.google.com/

Copyright© Fixstars Group

ワークショップの事前準備 (2)

! pip install amplify

token = "AE/*****************************" # ご自身のトークンを入力

【事前メールに記載】

• 取得されたトークンを用いて、トークンチェック用サンプルコードが動くか確認をお願いします。

https://colab.research.google.com/drive/1-Jh2nlhWO97OO96WgBwCSOQmP8BVa6-T （※URLはZoomのチャット欄を参照）

• サンプルコードは閲覧のみ可能な状態です。「ファイル」→「ドライブにコピーを保存」の上、ご自
身のトークンを入力してください。その後、Shift + Enterで実行下さい。

• ご自身のトークン番号は、Amplifyウェブページ
よりご確認いただけます。

• 実行後、以下の結果が出力されればOKです。

result: [q_0, q_1] = [1. 1.] (f = 0.0)

22

https://colab.research.google.com/drive/1-Jh2nlhWO97OO96WgBwCSOQmP8BVa6-T
https://colab.research.google.com/drive/1-Jh2nlhWO97OO96WgBwCSOQmP8BVa6-T
https://colab.research.google.com/drive/1-Jh2nlhWO97OO96WgBwCSOQmP8BVa6-T
https://colab.research.google.com/drive/1-Jh2nlhWO97OO96WgBwCSOQmP8BVa6-T
https://colab.research.google.com/drive/1-Jh2nlhWO97OO96WgBwCSOQmP8BVa6-T

Copyright© Fixstars Group

「数の分割問題」のハンズオン
通常の組合せ最適化

（ブラックボックス最適化への導入）

Copyright© Fixstars Group

数の分割問題

• 与えられた 𝑛 個の整数𝑎0, ⋯ , 𝑎𝑛−1を二つの集合に分ける。集合内の数の和が、

もう一方の集合内の数の和と等しくなるようできるか?

NP完全問題：とても難しい問題として知られている → 全通り試すしか方法は無い

24

Copyright© Fixstars Group

数の分割問題（具体例と解法の方針）

{2,10,3,8,5,7,9,5,3,2} の10個の数の完璧な分割は見つけられるか？

• 存在する

• {2,3,5,7,10} と {2,3,5,8,9}

• どちらも和は 27

• 分割方法は 23 通り存在する (対称を除く）

具体例

答 え

どうやって

解くか？

・ひとつの『数』がどちらの集合に分割されるか全通り試す → 210 = 1024通り

・効率のよい厳密な方法は知られていない・・・

(もし発見されたら大騒ぎ)

25

Copyright© Fixstars Group

数の分割問題（定式化）

最適化問題：数の分割において最も惜しい組合せは何か？

𝑓 = ෍

𝑖=0

𝑁−1

𝑠𝑖𝑎𝑖 𝑠𝑖 ∈ −1,+1

σ𝑠𝑖𝑎𝑖 は、自然と
{『1』の集合の和} – {『-1』の集合の和}

となる！

• 目的関数

{集合1の和} – {集合2の和} の絶対値を最小化

• 決定変数

数 𝑎𝑖 がどちらの集合に属するかを 𝒔𝒊 で表す

• 𝑎𝑖 = { 2,10, 3, 8, 5, 7, 9, 5, 3, 2}

• 𝑠𝑖 = {-1, 1,-1, 1,-1,-1, 1, 1, 1, 1}

• 目的関数

数理モデル

26

Copyright© Fixstars Group

数の分割問題（バイナリへの式変形）

• Quadratic Unconstrained Binary Optimization (QUBO) 式

絶対値を二次式で表す

±1をバイナリ変数で表す

𝑓 = ෍

𝑖=0

𝑁−1

𝑠𝑖𝑎𝑖 𝑠𝑖 ∈ −1,+1

→ ෍

𝑖=0

𝑁−1

𝑠𝑖𝑎𝑖

2

𝑠𝑖 ∈ −1,+1

→ ෍

𝑖=0

𝑁−1

2𝑞𝑖 − 1 𝑎𝑖

2

𝑞𝑖 ∈ 0,+1

σ𝑠𝑖𝑎𝑖 は、自然と
{『1』の集合の和} – {『-1』の集合の和}

となる！

0-1整数二次計画問題への変換

27

Copyright© Fixstars Group

数の分割問題（定式化の具体例）

• 𝑎𝑖 ={2,10,3,8,5,7,9,5,3,2} の10個の数の完璧な分割は見つけられるか？

• 𝑞𝑖 = 𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7, 𝑞8, 𝑞9 𝑞𝑖 ∈ 0,1 で集合0又は集合1、どちら

に所属するかを表す

𝑓 = ෍

𝑖=1

𝑁

2𝑞𝑖 − 1 𝑎𝑖

2

𝑓 =
2 2𝑞0 − 1 + 10 2𝑞1 − 1 + 3 2𝑞2 − 1 + 8 2𝑞3 − 1 + 5 2𝑞4 − 1

+7 2𝑞5 − 1 + 9 2𝑞6 − 1 + 5 2𝑞7 − 1 + 3 2𝑞8 − 1 + 2 2𝑞9 − 1

2

問 題

決定変数

目的関数

目的関数
を展開

28

Copyright© Fixstars Group

数の分割問題（プログラムコード）

• 問題の定義と決定変数生成器による決定変数の生成

• 目的関数、𝑓 = σ𝑖=1
𝑁 2𝑞𝑖 − 1 𝑎𝑖

2
、の定式化（①②③は同等）

①

②

③

f = ((2 * q - 1) * a).sum() ** 2

result = amplify.solve(f, client)

q = [1, 1, 1, 0, 1, 1, 0, 0, 0, 0], f = 0.0, w = 27

各数字に対して、集合0か、集合1か

得られた目的関数の値0 各集合の合計値27

a = [2, 10, 3, 8, 5, 7, 9, 5, 3, 2]
q = amplify.VariableGenerator().array(“Binary”, len(a))

f = amplify.sum((2 * q - 1) * a) ** 2

f = 0
for i in range(len(a)):

f += (2 * q[i] - 1) * a[i]
f **= 2

色々な書き方が出来る

サンプルコード：

https://colab.research.google.com/drive/11vI2sHbtP_a

aZHOTjsGYoGcvw2dHhD1z

1. 定式化

2. 実 行

3. 結 果

29

https://colab.research.google.com/drive/11vI2sHbtP_aaZHOTjsGYoGcvw2dHhD1z
https://colab.research.google.com/drive/11vI2sHbtP_aaZHOTjsGYoGcvw2dHhD1z

Copyright© Fixstars Group

オンラインデモ & チュートリアル

30

https://amplify.fixstars.com/ja/demo

検索Amplify デモ

30

https://amplify.fixstars.com/ja/demo

Copyright© Fixstars Group

組合せ最適化と
ブラックボックス最適化

31

Copyright© Fixstars Group

通常の組合せ最適化とブラックボックス最適化

通常の数理最適化 ブラックボックス最適化 (BBO)

● 直接の定式化が困難な 目的関数

○ 低 損失 な流体デバイス形状？

○ 高 性能 な材料/構造トポロジー？

○ ターゲットに 近い 結果を実現する実験条件？

● 最適化の実施

○ 実験やシミュレーションによる試行錯誤により

定式化できない目的関数を最小化

● 目的関数 を定式化（例：QUBO）

○ 数の分割（ 差 の最小化）

𝑓 = Σ 2𝑞𝑖 − 1 𝑎𝑖
2

○ 経路最適化（ 経路距離 最小化）

𝑓 = ΣΣΣ𝑑𝑖,𝑗𝑞𝑛,𝑖𝑞𝑛+1,𝑗⋯

● 最適化の実施

○ イジングマシンにより、定式化された

目的関数を最小化

32/15

Copyright© Fixstars Group

ブラックボックス最適化のフロー

FMQA

• モデル関数 ➔ FM

• 最適化 ➔ QA

FMQAの特徴：

東大津田先生率いる研究グループ

Kitai, et al., Phys. Rev. Res. (2020)

*Quadratic-optimization Annealing

 高次元の最適化問題に強い！

⇔ 次元の呪い

 制約条件にも強い！

逐次最適化：最適化サイクルの実施

① 新たな入出力

ペアを学習データ

に追加

② 学習データに

基づきモデル関数

を構築

③ モデル関数に基

づき最適入力候補

を取得（最適化）

④ 新しい入力で

実験やシミュレー

ションを実施

33

Copyright© Fixstars Group

モデル関数としての Factorization Machine (FM)

• モデル関数 𝑔(𝒙) に機械学習モデルの一種である Factorization Machine (FM) を用いると、

次のように変数 𝒙 に対する2次式での記述ができる。

𝑔 𝒙 𝒘, 𝒗 = 𝑤0 + 𝒘, 𝒙 +෍

𝑖=1

𝑛

෍

𝑗=𝑖+1

𝑛

𝒗𝑖 , 𝒗𝑗 𝑥𝑖 𝑥𝑗

= 𝑤0 +෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 +
1

2
෍

𝑓=1

𝑘

෍

𝑖=1

𝑛

𝑣𝑖𝑓 𝑥𝑖

2

−෍

𝑖=1

𝑛

𝑣𝑖𝑓
2 𝑥𝑖

2

• 𝑘 はハイパーパラメータ、 𝒘 及び 𝒗 は FM 学習後に取得される FM パラメータ。

• FM パラメータ数は 𝑘 に依存。𝑘 = 𝑛 のときは QUBO の相互作用項と同じ自由度がある一方、

𝑘 を小さくすることでパラメータ数を減らし過学習を抑制する効果

• このようなブラックボックス最適化手法を FMQA と呼ぶ。

➔ QUBO式

K. Kitai, et al., Phys. Rev. Res. (2020).
T. Inoue, et al., Opt. Express (2022).

34

https://doi.org/10.1103/PhysRevResearch.2.013319
https://doi.org/10.1364/OE.476839

Copyright© Fixstars Group

ブラックボックス最適化 活用例

材料分野に限らず、幅広い分野へ適用可能

35

Copyright© Fixstars Group

QA-BBO: 活用例 (Amplify サンプルプログラム)

検索Amplify デモ

材料最適化

FMQA
×

物理モデル

化学プラント
運転条件最適化

FMQA
×

化学シミュレーション

翼形状最適化

FMQA
×

流体シミュレーション

信号制御最適化

FMQA
×

マルチ・エージェン
ト・シミュレーション

機器設計最適化

FMQA
×

撹拌シミュレーション

ハンズオン

36

Copyright© Fixstars Group

QA-BBO: 活用例 (Amplify ユーザー)

化学、 創薬、 食品、 自動車、 電機、 通信、 重工、 エネルギー、ヘルスケア・・・

非線形現象の

逆問題

設計開発に

おける部品選定

材料配合

最適化

多目的

最適化

物理モデルの

簡略化

機械学習：

コスト↓精度↑

活用領域

37

Copyright© Fixstars Group

30回

50回

80回

事例: ターボ機械の形状最適化（川崎重工業様）

流路形状を最適化したい
(圧縮機全体の空力性能 (ポリトロープ効率) の最大化)

Return
Channel

Impelle
r

inflow

outflow

最適化が進むごとに損失発生領域
が低減する形状へ

空
力

性
能

(正
規

化
後

)

GA

遠心圧縮機

⚫ ターボ機械の開発では、従来より商用最適化ソフトによる遺伝的アルゴリズム (GA) を使用し形状最適化を行うことが多

かったが、最適化規模が大きくなると最適解の求解までに時間がかかり、開発期間が長期化するといった課題があった

⚫ 量子アニーリング・イジングマシンを活用した BBO により、従来手法と比べ、同じ計算回数でもより優れた解が得られ

ることを確認。今後はさらに設計変数を増やしていく予定

設計変数: 5ヵ所の長さ

FMQA
38

Copyright© Fixstars Group

事例: 車両設計最適化（マツダ様）

• 車体設計の複数車種同時最適化問題。実数変数200以上の大規模問題。

• 車体の軽量化と共通部品数の最大化の実現（衝突性能・製造制約などの制約を満たした上で）

• 国内外研究グループ*1,2 により様々な手法が試されてきており、1〜3万回程度の試行により、あ

る程度良い解が見つけられることは確認されていた

*1 進化計算コンペティション2017開催報告
*2 Multi-objective Bayesian optimization over high-dimensional search spaces

検索Amplify マツダ

• FMQA により、1,000回 (3%) 程度の試行

で、従来手法と同等以上の解を見つけるこ

とに成功！

39

https://www.jstage.jst.go.jp/article/tjpnsec/9/2/9_86/_article/-char/ja
https://www.jstage.jst.go.jp/article/tjpnsec/9/2/9_86/_article/-char/ja
https://www.jstage.jst.go.jp/article/tjpnsec/9/2/9_86/_article/-char/ja
https://proceedings.mlr.press/v180/daulton22a.html
https://proceedings.mlr.press/v180/daulton22a.html
https://proceedings.mlr.press/v180/daulton22a.html
https://proceedings.mlr.press/v180/daulton22a.html
https://proceedings.mlr.press/v180/daulton22a.html

Copyright© Fixstars Group

ブラックボックス最適化ハンズオン
問題設定及び目的関数

40

Copyright© Fixstars Group

撹拌機器の設計・運転条件最適化

一定時間でできるだけ均一に撹拌できるように設計

設計パラメータ
𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4

撹拌機器の設計・運転最適化

41

Copyright© Fixstars Group

撹拌機器の設計・運転条件最適化

目的関数：撹拌後の物質濃度の空間変動値

• ブラックボックスな目的関数

【入力】

設計パラメータ 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4

【処理】

与えられた設計パラメータに基づく撹拌機による一

定時間の撹拌シミュレーション

【出力】

一定時間、攪拌後の物質の空間変動値

一定時間でできるだけ均一に撹拌できるように設計

設計パラメータ
𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4

撹拌機器の設計・運転最適化

42

Copyright© Fixstars Group

撹拌機器の設計・運転条件最適化

① 新たな入出力ペ

アを学習データに

追加

② 学習データに基

づきモデル関数

𝑔 𝒙 を構築

③ モデル関数に基

づき最適入力候補を

取得（最適化）

目的関数：撹拌後の物質濃度の空間変動値

一定時間でできるだけ均一に撹拌できるように設計

設計パラメータ
𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4

撹拌機器の設計・運転最適化

43

Copyright© Fixstars Group

ブラックボックス関数の実装

• 撹拌シミュレータ MixingSimulator

• ブラックボックス関数

44

Copyright© Fixstars Group

ブラックボックス最適化ハンズオン

1. FM機械学習

2. FMQA

45

Copyright© Fixstars Group

ブラックボックス最適化のデモプログラム

ブラックボックス関数 最適化サイクル

撹拌機の設計最適化、サンプルプログラム（FM機械学習）

https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW

46

https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW

Copyright© Fixstars Group

FM プログラム 1/6 （ブラックボックス関数の定義）

• 整数決定変数（設計パラメータ）の値域の指定

• ブラックボックス関数の実装

47

Copyright© Fixstars Group

FM プログラム 2/6（整数エンコーダーの補助クラス）

• 決定変数は整数、FM (QUBO)はバイナリ変数を考慮

• 整数⇔バイナリの変換を行うクラス

48

Copyright© Fixstars Group

FM プログラム 3/6（FMモデルの定義）

• FM モデルを PyTorch で定義する

49

Copyright© Fixstars Group

FM プログラム 4/6（FMの学習）

FM 学習は、通常の機械学習と同様に進める。教師

データを学習・検証データに分割し、ミニバッチ学習。

• x, y: 教師データ

• model: FM モデル（TorchFM）

• epochs: エポック（繰り返し）の数

• lr:（初期）学習率

学習済みモデルに対し、次のような評価を実施

50

Copyright© Fixstars Group

FM プログラム 5/6（初期学習データ作成）

学習データを乱数により生成

• num_samples：学習データのサンプル数

• blackbox：ブラックボックス関数（実験又は

シミュレーション） 𝑓(𝒙)

51

Copyright© Fixstars Group

FM プログラム 6/6（メイン部分）

実際にサンプルプログラムを実行してみましょう。
デフォルトの条件から、

• FMのハイパーパラメータ (k)

• エポック数 (epochs)

• 学習率 (lr)

などを変更した場合、真値と予測値の相関係数及び

RMS誤差はどのように変化するでしょうか？

サンプルコード：

https://colab.research.google.com/drive/195

_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW

52

https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW
https://colab.research.google.com/drive/195_mSDUKv3poUuXqzOTzbBFQ7Bh5p2SW

Copyright© Fixstars Group

1. FM機械学習

2. FMQA

ブラックボックス最適化ハンズオン

53

Copyright© Fixstars Group

ブラックボックス最適化のデモプログラム

ブラックボックス関数 最適化サイクル

撹拌機の設計最適化、サンプルプログラム（FMQA）

https://colab.research.google.com/drive/1ubEA1WIMEc6sBDxuHa0Nr5iC74pP0xQz

54

https://colab.research.google.com/drive/1E_Re1W2hhGtRmMWDhi1_VjTg-0o2T9Mk

Copyright© Fixstars Group

FMQA プログラム 1/2 （アニーリング部分）

学習済みFMに基づき ෝ𝒙 を推定する関数

• バイナリ決定変数配列の取得

• 学習済みモデルからモデル係数を取得

• モデル係数に基づき目的関数 𝑔(𝑥) を構築

• solve の実行（トークン有力を忘れずに）

• 本サイクルにおける ෝ𝒙 を返却

55

Copyright© Fixstars Group

FMQA プログラム 2/2（メイン部分）
サンプルコード：

https://colab.research.google.com/drive/1E_

Re1W2hhGtRmMWDhi1_VjTg-0o2T9Mk

56

実際にサンプルプログラムを実行してみましょう！

https://colab.research.google.com/drive/1E_Re1W2hhGtRmMWDhi1_VjTg-0o2T9Mk
https://colab.research.google.com/drive/1E_Re1W2hhGtRmMWDhi1_VjTg-0o2T9Mk
https://colab.research.google.com/drive/1E_Re1W2hhGtRmMWDhi1_VjTg-0o2T9Mk
https://colab.research.google.com/drive/1E_Re1W2hhGtRmMWDhi1_VjTg-0o2T9Mk

Copyright© Fixstars Group

FMQA プログラムの実務での活用方法

基本的に、blackbox()を変更する。必要に

応じて、現在の学習データの出力などを追加。

• 例①：blackbox() 内でシミュレーションを呼び

出し、後処理、その戻り値を最小化するように最

適化。

• 例②：blackbox() 内で実験を行う。つまり、1回

の FMQA で推定された探索候補 ෝ𝒙 を対象に実験し、

結果を教師データに追加、次のFMQA 試行を行う。

• ℎ 𝒙 を最大にするような入力 𝒙 を推定する場合は、

− ℎ 𝒙 などを目的関数 𝑓 𝒙 とする。

57

Copyright© Fixstars Group

Amplify-BBOptによる実装負荷の軽減

58

• Amplify SDK + Pytorch • Amplify-BBOpt

from amplify_bbopt import FMTrainer, Optimizer, Dataset

最適化クラスのインスタンス化

optimizer = Optimizer(

blackbox=bbfunc,

trainer=FMTrainer(),

client=client,

training_data=Dataset(np.array(x), np.array(y)),

)

最適化を実行

optimizer.optimize(num_iterations=20)

Amplify-BBOpt 公式ドキュメント：
amplify.fixstars.com/ja/docs/
amplify-bbopt/v1/

• Amplify-BBOpt

サンプルプログラム：
colab.research.google.com/drive/1a8XP0-wsDbrWa8Lp3PGDhonbuAX_hIrx

https://amplify.fixstars.com/ja/docs/amplify-bbopt/v1/
https://amplify.fixstars.com/ja/docs/amplify-bbopt/v1/
https://amplify.fixstars.com/ja/docs/amplify-bbopt/v1/
https://amplify.fixstars.com/ja/docs/amplify-bbopt/v1/
https://colab.research.google.com/drive/1a8XP0-wsDbrWa8Lp3PGDhonbuAX_hIrx
https://colab.research.google.com/drive/1a8XP0-wsDbrWa8Lp3PGDhonbuAX_hIrx
https://colab.research.google.com/drive/1a8XP0-wsDbrWa8Lp3PGDhonbuAX_hIrx

Copyright© Fixstars Group

今後について

概要 材料探索 翼型最適化 信号機制御

一般的な組合せ最適化問題 ブラックボックス最適化問題

目的関数のみ
で定式化

制約条件のみ
で定式化

目的関数 + 制約条件

https://amplify.fixstars.com/docs/amplify/v1/index.html

ぜひ、デモ・チュートリアルにあるサンプルコードにも挑戦してみてください！

困った時はドキュメンテーションを！

59

https://amplify.fixstars.com/docs/amplify/v1/index.html

Copyright© Fixstars Group

今後のセミナー予定・情報発信

ご質問・ご不明点がありましたら、お問い合わせフォームでご連絡下さい
https://amplify.fixstars.com/ja/contact

@FixstarsAmplify

60

今後も定期的に無料セミナーを開催します！

2026/3/18（予定）

「ブラックボックス最適化
（機械学習の特徴量抽出）」

ブラックボックス最適化による機械学
習の特徴量抽出をハンズオンで実施。

2026/3/5 （予定）

「Amplify-BBOpt 技術解説」

イジングマシン活用のブラックボック
ス最適化を簡単実装可能なライブラリ
Amplify-BBOptの使い方を紹介。

2026/2/12（受付中）

「多目的最適化 技術解説」

定式化ベースの多目的最適化に関する
定式化やスケーリングに関するTipsを
紹介。

2026/2/19（予定）

「エネルギーマネジメント最
適化 ハンズオン」

エネルギーマネジメント最適化をハン
ズオンで実施。

60

https://amplify.fixstars.com/ja/contact
https://amplify.fixstars.com/ja/contact
https://x.com/FixstarsAmplify

Copyright© Fixstars Group

Q&A

61

	Default Section
	スライド 1: 量子コンピュータ時代の プログラミングセミナー
	スライド 2: 本日の予定
	スライド 3: (株) Fixstars Amplify の紹介
	スライド 4: 量子技術とFixstars Amplify
	スライド 5: 量子・量子インスパイアード技術
	スライド 6: 最適化問題の分類
	スライド 7: Fixstars Amplify とは
	スライド 8: Fixstars Amplify の対応マシンの一例
	スライド 9: 活用領域とユースケース（PoC・実稼働）
	スライド 10: アニーリングマシンの プログラミング体験
	スライド 11: イジングマシンの実行手順
	スライド 12: Amplifyの基本的な使用方法 (1)
	スライド 13: Amplifyの基本的な使用方法 (2)
	スライド 14: Amplifyの基本的な使用方法 (3)
	スライド 15: Amplify SDK によるプログラミング例
	スライド 16: Fixstars Amplify ご利用プラン
	スライド 17: 料金のご紹介
	スライド 18: 研究・開発者向けおすすめの進め方
	スライド 19: セミナー・トレーニングのご紹介
	スライド 20: ワークショップ 事前準備（事前メールの内容）
	スライド 21: ワークショップの事前準備 (1)
	スライド 22: ワークショップの事前準備 (2)
	スライド 23: 「数の分割問題」のハンズオン
	スライド 24: 数の分割問題
	スライド 25: 数の分割問題（具体例と解法の方針）
	スライド 26: 数の分割問題（定式化）
	スライド 27: 数の分割問題（バイナリへの式変形）
	スライド 28: 数の分割問題（定式化の具体例）
	スライド 29: 数の分割問題（プログラムコード）
	スライド 30: オンラインデモ & チュートリアル
	スライド 31: 組合せ最適化と ブラックボックス最適化
	スライド 32: 通常の組合せ最適化とブラックボックス最適化
	スライド 33: ブラックボックス最適化のフロー
	スライド 34: モデル関数としての Factorization Machine (FM)
	スライド 35: ブラックボックス最適化 活用例
	スライド 36: QA-BBO: 活用例 (Amplify サンプルプログラム)
	スライド 37: QA-BBO: 活用例 (Amplify ユーザー)
	スライド 38: 事例: ターボ機械の形状最適化（川崎重工業様）
	スライド 39: 事例: 車両設計最適化（マツダ様）
	スライド 40: ブラックボックス最適化ハンズオン
	スライド 41: 撹拌機器の設計・運転条件最適化
	スライド 42: 撹拌機器の設計・運転条件最適化
	スライド 43: 撹拌機器の設計・運転条件最適化
	スライド 44: ブラックボックス関数の実装
	スライド 45: ブラックボックス最適化ハンズオン
	スライド 46: ブラックボックス最適化のデモプログラム
	スライド 47: FM プログラム 1/6 （ブラックボックス関数の定義）
	スライド 48: FM プログラム 2/6（整数エンコーダーの補助クラス）
	スライド 49: FM プログラム 3/6（FMモデルの定義）
	スライド 50: FM プログラム 4/6（FMの学習）
	スライド 51: FM プログラム 5/6（初期学習データ作成）
	スライド 52: FM プログラム 6/6（メイン部分）
	スライド 53: ブラックボックス最適化ハンズオン
	スライド 54: ブラックボックス最適化のデモプログラム
	スライド 55: FMQA プログラム 1/2 （アニーリング部分）
	スライド 56: FMQA プログラム 2/2（メイン部分）
	スライド 57: FMQA プログラムの実務での活用方法
	スライド 58: Amplify-BBOptによる実装負荷の軽減
	スライド 59: 今後について
	スライド 60: 今後のセミナー予定・情報発信
	スライド 61

